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The same underlying mathematical structure characterizes some of the most popu-
lar multicomponent models for the prediction of surface free energies and adhesion
works. After a brief illustration of the general methods for the computation of liquid
and solid components in typical multicomponent theories, it is shown that both model
definition and component estimate may take great advantage from application of Prin-
cipal Component Analysis techniques, owing to the very peculiar structure of adhe-
sion work equations. It is also put into evidence that a problem of scale multiplicity
arises as a consequence of the symmetries involved in the model equations for adhesion
work and surface free energy. A special discussion is devoted to the specific cases of
van Oss–Chaudhury–Good acid–base theory, Qin–Chang model and extended Drago
theory, which constitute the most common multicomponent models usually applied in
the analysis of adhesion phenomena.
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Principal Component Analysis (PCA)
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1. Multicomponent surface free energy theories

It is widely recognized that multicomponent models play an important role
in the analysis of the interfacial interactions of many materials and, more spe-
cifically, in the prediction of the solid–liquid work of adhesion and surface free
energy of solid surfaces. The description of the surface interaction of two mate-
rials in terms of an appropriate number of “components” pertaining to contribu-
tions of different physico-chemical nature is a approach shared by many models
proposed in different years. One of the most widely recognized and succes-
ful multicomponent models is van Oss–Chaudhury–Good (vOCG) theory [1–6],
which expresses the work of adhesion of a liquid l on a solid s by the formula
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W adh = 2
[√

γ LW
s γ LW

l +
√

γ +
s γ −

l +
√

γ −
s γ +

l

]
(1.1)

whereas the surface tension of the liquid and the surface free energy of the solid
take the form

γl = γ LW
l + 2

√
γ +
l γ −

l γs = γ LW
s + 2

√
γ +
s γ −

s (1.2)

respectively. In the previous equations the superscript LW denotes the Lifshizt–
van del Waals components of the materials, related to dispersive interactions,
while + and − label the acidic and the basic components, which take into
account the acid–base interactions between electron-donor (basic) and electron-
acceptor (acidic) sites of the interacting molecules – acidity and basicity are thus
understood in a Lewis’ sense. All the model equations reflect the intrinsic com-
plementarity of acid–base interactions. Although nowadays it constitutes one of
the most commonly used, vOCG theory was not the first multicomponent model
introduced in adhesion science. In the late 60s, long before vOCG, a prototype
of multicomponent theory was already proposed by Owens and Wendt [7] (OW),
whose aim was to estimate the specific contribution of dispersive and “polar”
interaction to the overall work of adhesion by the definition of suitable disper-
sive and polar contributions for each material, in such a way that

γl = γ d
l + γ

p
l γs = γ d

s + γ
p
s (1.3)

for liquids and solids, respectively. A sort of geometric-mean rule separately
applied to dispersive and polar components provides then, accordingly, the work
of adhesion between the liquid and the solid in contact

W adh = 2
[√

γ d
s γ d

l +
√

γ
p
s γ

p
l

]
. (1.4)

The theory can be easily extended, for instance to take specifically into
account hydrogen-bonding interactions:

W adh = 2
[√

γ d
s γ d

l +
√

γ
p
s γ

p
l +

√
γ H
s γ H

l

]
(1.5)

γl = γ d
l + γ

p
l + γ H

l γs = γ d
s + γ

p
s + γ H

s

by introducing, for each chemical species involved, the appropriate further com-
ponent labeled by the superscript H . Although relatively aged, OW theory is
still currently applied with satisfactory results, even in very sophisticated and
intriguing experimental contexts [8]. More recently [9–11], Qin and Chang (QC)
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have revised vOCG theory and proposed a new, in principle more general three-
parameter model whose equations can be put into the form

γl = 1
2
(P d

l )2 − P a
l P b

l γs = 1
2
(P d

s )2 − P a
s P b

s (1.6)

W adh = P d
s P d

l −
(
P a

s P b
l + P b

s P a
l

)

for liquid surface tension, solid surface free energy and solid-liquid work of
adhesion, the superscripts d, a and b corresponding to LW -dispersive, Lewis-
acidic and Lewis-basic components, respectively. Although developed not to pre-
dict adhesion work or surface free energy, other models present a structure very
similar to those previously described. Drago’s theory [12–14] provides a very
well-known example. Drago distinguishes “acidic” and “basic” solvents (electron
acceptors and donors), each characterized by two variables in such a way that
the enthalpy of adduct formation for any acceptor-donor pair is written as

−�H = CACB + EAEB (1.7)

where the subscripts A and B indicate acceptor and donor and E and C

represent electrostatic and covalent contributions, respectively. Similar empirical
relationships, but for free energy, have been obtained by electrochemical tech-
niques by Edwards [15], Mulliken [16] and Foss [17]. Drago’s theory for enthalpy
of adduct formation can be readily extended [18] to take into account the pos-
sible co-existence of acidic and basic sites in the same molecule, by envisaging an
equation of the form

−�H = CAC′
B + CBC′

A + EAE′
B + EBE′

A . (1.8)

Even more general models, with an analogous formulation, are provided by
the Linear Free Energy Relationships (LFERs). In recent papers [19, 20] it has
been emphasized that from a mathematical point of view the GvOC theory can
be classified in the realm of Linear Free Energy or Solvation Energy Relation-
ships (LFER or LSER) [21, 22], where a thermodynamical quantity Q, pertai-
ning in this case to Lewis acid–base properties of two materials X and Y , is
expressed as a sum of pairwise products of some material coefficients

Q =
∑

i

XiYi . (1.9)

The quantity Q may assume a different meaning according to the kind of
application, for instance it may be a free energy or an enthalpy, but this is not
mandatory. Typically the index i specifies the class of the coefficient: dispersive,
acidic, basic, etc, whereas symbols X and Y denote the interacting materials.
These kinds of relations are widely employed in physical organic chemistry
[21, 22], as it is done in the acid–base theory by Drago [12].
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All the multicomponent models previously listed can be expressed as bili-
near or quadratic forms of components, for adhesion work and surface free
energy, respectively. Not all the multicomponent theories are constructed in this
way; an interesting exception is for instance the model by Wu [23, 24], who dis-
tinguishes dispersive and “polar” contributions to adhesion work, as in WO,
but assuming a harmonic-mean combining rule instead of a geometric-mean
approximation

W adh = 4

[
γ d
l γ d

s

γ d
l + γ d

s

+ γ
p
l γ

p
s

γ
p
l + γ

p
s

]
. (1.10)

The general mathematical form of almost all the above multicomponent
models is immediately recognized. For a set of s solids, labeled by the index i,
and l liquids, denoted with the index j , the adhesion work W adh

ij of the solid i

on the liquid j is written as

W adh
ij = 2

c∑
h,k=1

ξ
(h)
i Shkλ

(k)
j ∀ i = 1, . . . , s j = 1, . . . , l (1.11)

while the surface tension γj of the liquid j , susceptible of a direct measurement,
holds

γj =
c∑

h,k=1

λ
(h)
j Shkλ

(k)
j j = 1, . . . , l (1.12)

where:

◦ λ
(k)
j , with k = 1, . . . , c, stand for the components of the liquid j ;

◦ ξ
(h)
i , for h = 1, . . . , c, denote the components of the solid i;

◦ S = {S
hk

}
h,k=1,...,c

is a c × c structure matrix, characteristic of the multicom-
ponent model, which we will assume real, symmetrical and non-singular.

With the assumed prescriptions on S, equations of the form (1.11)–(1.12)
are certainly valid for all the multicomponent models previously listed, provided
that the “components” are identified with the square roots of surface free energy
parameters:

ξ = √
γs λ = √

γl , (1.13)

on having introduced the obvious vector notation. The only exception is QC
theory, where parameters Ps , Pl coincide with components up to a constant scale
factor

ξ = 1√
2
Ps λ = 1√

2
Pl . (1.14)
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If d1, . . . , dc are the (real and non-vanishing) eigenvalues of S and sgn(x)

denotes the sign function, an orthogonal matrix C exists such that

S =CT

⎛
⎜⎝

√|d1| O

. . .

O
√|dc|

⎞
⎟⎠

⎛
⎜⎝

sgn(d1) O

. . .

O sgn(dc)

⎞
⎟⎠

⎛
⎜⎝

√|d1| O

. . .

O
√|dc|

⎞
⎟⎠C

(1.15)

and therefore the multicomponent model can always be reduced to the standard
form

W adh
ij = 2

c∑
h=1

sgn(dh) ξ
′(h)
i λ

′(h)
j γj =

c∑
h=1

sgn(dh)
(
λ

′(h)
j

)2
(1.16)

by applying the same linear transformation to the components of the solids
⎛
⎜⎝

√|d1| O

. . .

O
√|dc|

⎞
⎟⎠ C

⎛
⎜⎝

ξ
(1)
i
...

ξ
(c)
i

⎞
⎟⎠ =

⎛
⎜⎝

ξ
′(1)
i
...

ξ
′(c)
i

⎞
⎟⎠ ∀ i = 1, . . . , s (1.17)

and to those of the liquids. Multicomponent models of the form (1.11)–(1.12)
are thus actually different if their structure matrices do not share the same signa-
ture {sgn(d1), . . . , sgn(dc)}, otherwise they should be regarded as mathematically
equivalent up to a linear gauge of components [18].

The main goal of multicomponent theories is to provide reliable estimates
of solid and liquid components, in such a way that equations (1.11) and (1.12)
hold true with a satisfactory accuracy for the largest set of liquids and solid sur-
faces. More specifically, since no unquestionable direct measurement technique
is available in this respect, one of the most important skills of multicomponent
theories is the prediction of surface free energy of solids by means of relation-
ships analogous to (1.12), involving the components of the solids

γ i =
c∑

h,k=1

ξ
(h)
i Shkξ

(k)
i i = 1, . . . , s . (1.18)

The problem can be numerically tackled in essentially three different ways, accor-
ding to the available data and the application purposes.

2. Methodologies for component estimate

The calculation of components may be carried out by adopting different
approaches. Indeed the conceivable methods for component estimate, by using
only adhesion work and surface tension data, can be classified as follows:
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(a) linear method;
(b) linear best-fit method;
(c) nonlinear best-fit method.

The approach (a), as well as (b), provides a strategy for the calculation of solid
components and assumes the components of an appropriate set of test liquids as
a priori known. In this sense the application of both of them appears conditio-
ned by the actual availability of such a set of known components. Such an occur-
rence is far from being obvious, owing to the difficulties in gathering an ade-
quate number of reliable adhesion work or contact angle data, and to the nonu-
nivocal interpretation of the components eventually calculated by contact angle
measurements, which is intrinsic to this kind of models. In this respect see sec-
tion 6, devoted to the problem of scale multiplicity in the definition of compo-
nents. It is worthy of note that even in the domain of the vOCG model, maybe
one of the most classical and successful multicomponent theories, different scales
of acid–base strength have been proposed [20]. Method (c) faces up to the pro-
blem of component calculation in the most complete way, since it assumes no
known component. Nevertheless, it requires a large number of high-quality data
and numerical calculations are more cumbersome and time-consuming than for
the previous approaches (a) and (b).

(a) Linear method. If the components and adhesion works, on a given solid
i, of c liquids specified by appropriate values of the index j ∈ Λ ⊆ {1, 2, . . . , l}
are known, then there holds

c∑
h=1

( c∑
k=1

Shkλ
(k)
j

)
ξ

(h)
i = W adh

ij ∀ j ∈ Λ . (2.1)

The latter is a linear set of algebraic equations to be solved in the solid compo-
nents ξ

(h)
i , h = 1, . . . , c. Solution exists and is unique provided that the square

matrix

Ajh =
c∑

k=1

Shkλ
(k)
j , j ∈ Λ , h = 1, . . . , c (2.2)

is nonsingular. Even in this case, however, the possible ill-conditioning of the
matrix may seriously affect the accuracy of the estimated components [25].

(b) Linear best-fit method. When the number of probe liquids is larger than
c, the linear set (2.1) consists of more equations than the unknown components,
so that it is expected that no solution generally exists in a proper sense. If this
is the case, one may anyway look for a best-fit solution in a least-square sense,
always defined. The latter may turn out to be unique or not, but the smallest-
Euclidean norm solution can be written as
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⎛
⎜⎝

ξ
(1)
i
...

ξ
(c)
i

⎞
⎟⎠ = A+

⎛
⎜⎝

W adh
ij
...

j ∈ Λ

⎞
⎟⎠ (2.3)

in terms of the Moore-Penrose pseudoinverse matrix A+ [26]. Troubles arising
from ill-conditioning are similar to those of method (a) [25].

(c) Nonlinear best-fit method. The most general approach to the problem of
component calculation consists in searching a best-fit solution for the whole set
of adhesion work and surface tension equations. Out of a set of s solids and l

liquids there are sl equations for the adhesion work and l further equations for
surface tension. The s equations for the surface free energies of solids are not
considered in the calculation, since the surface free energies γ i , i = 1, . . . , s are
not experimentally known. The number of components to be determined is then
c(s + l), versus a whole of sl + l equations. As c is fixed, there certainly holds
sl+l > c(s+l) for s and l large enough. In this hypothesis there is only a remote
possibility that equations (1.11) and 1.12 can be solved exactly, so that a best-fit
solution may represent a reasonable compromise. For instance, one can minimize
the sum of squares or residuals

Φ(ξ, λ) =
s∑

i=1

l∑
j=1

⎡
⎣2

c∑
h,k=1

ξ
(h)
i Shkλ

(k)
j − W adh

ij

⎤
⎦

2

+
l∑

j=1

⎡
⎣ c∑

h,k=1

λ
(h)
j Shkλ

(k)
j − γj

⎤
⎦

2

,

(2.4)

an appropriate weighted sum of squares of residuals or any other suitable
residual-dependent merit function. The calculations involved are much more
cumbersome than in the linear approach (a) or (b), and more delicate appears
the problem of error propagation. But the method requires no a priori estimate
of or assumption on the components of the test liquids used [25].

3. Principal Component Analysis

Principal Component Analysis (PCA) can be viewed as a particular tech-
nique to filter data which are arranged in an array [27, 28]. Let X be a n × p

matrix of data. One can assume that each of its rows corresponds to a point in
the space R

p of vectors with p components, one per each column; the matrix X

specifies then a set of n points xi in R
p:

X =

⎛
⎜⎜⎜⎜⎜⎝

xT
1

...

xT
n

⎞
⎟⎟⎟⎟⎟⎠

xi ∈ R
p ∀ i = 1, . . . , n . (3.1)
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It may happen that the points xi are not distributed at random in R
p,

but along a particular subset of R
p. More specifically, it may be that the data

approximately lie on a linear space Sk of dimension k ≤ p, spanned by an ortho-
normal set {h1, h2, . . . , hk} of vectors in R

p (see figure 1)

hT
j hq = δjq ∀ j, q = 1, . . . , k , (3.2)

which will form the columns of a p × k matrix H

H = (h1 |h2 |. . .| hk) . (3.3)

The orthogonal projections of the vectors xi ’s on Sk are given by the
column vectors (see figure 2)

HHT xi ∀ i = 1, . . . , n (3.4)

Figure 1. The points xi ∈ R
p, i = 1, . . . , n, representative of the rows of matrix X, almost aligned

along a linear space Sk of dimension k < p.

Figure 2. The orthogonal projection HHT xi of a generic point xi ∈ R
p on the linear space Sk . The

distance of xi from Sk is denoted with δi and defined as the difference xi − HHT xi .
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or, equivalently, by the row vectors

xT
i HHT ∀ i = 1, . . . , n (3.5)

and the matrix of orthogonal projections holds therefore

XHHT (3.6)

so that the orthogonal projections of xi ’s on Sk coincide with the rows of
XHHT . The distances of the points xi from Sk – the “residuals” – can be writ-
ten

δi = xi − HHT xi = (I − HHT )xi i = 1, . . . , n (3.7)

and the sum of their squares turns out to be

SS =
n∑

i=1

δ2
i = tr[X(I − HHT )XT ] = tr[XXT ] − tr[XHHT XT ]

= tr[XXT ] − tr[HT XT XH ] (3.8)

on having denoted with tr(A) the trace of a generic square matrix A. In PCA
the matrix H , and the corresponding linear space Sk, are determined by using a
least-square fitting strategy: H must be chosen in such a way that the residual
sum of squares is minimum or, equivalently, that the trace

tr[HT XT XH ] (3.9)

is maximum, with the constraint that the columns h1, . . . , hk of H constitute an
orthonormal set. An algebraic calculation shows that the vectors h1, . . . , hk coin-
cide with the first k vectors of the orthonormal basis

h1, h2, . . . , hp (3.10)

of eigenvectors of the real, symmetric and semipositive defined matrix XT X

XT Xhi = λihi ∀ i = 1, . . . , p (3.11)

with eigenvalues arranged in decreasing order

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 . (3.12)

The corresponding (residual) sum of squares holds then

tr[X(I − HHT )XT ] =
p∑

i=k+1

λi . (3.13)



C. Della Volpe and S. Siboni / PCA and multicomponent theories 1041

If we assume that the data xi are principally located along Sk, we replace the
points xi with their orthogonal projections on Sk

xi −−−−−→ HHT xi (3.14)

so that the data matrix X is approximated by the k-principal component model

XHHT =
k∑

j=1

(Xhj )h
T
j , (3.15)

where hi is known as the loading of the i-th principal component and Xhi

denotes the i-th score. An alternative interpretation of the result is that the sum
of squares of data – also known as the “deviance of the sample”

n∑
i=1

p∑
j=1

(xi)
2
j =

n∑
i=1

p∑
j=1

X2
ij = tr(XT X) =

p∑
j=1

λj (3.16)

can be expressed as the sum of a “deviance explained by the k-PC model”

tr[XHHT XT ] = tr[HT XT XH ] =
k∑

j=1

λj (3.17)

and of an “unexplained deviance” (3.13). PCA is strictly related to the Singular
Value Decomposition (SVD) of the data matrix X [29]. Indeed, one can easily
verify that the k-PC model is no more than a truncation to the largest k singular
values of the SVD of X

X = V

(
Σ O

O O

)
UT =

r∑
j=1

σjvju
T
j (3.18)

where:

(i) r = rank(X) = rank(XT X) ≤ min(n, p) is the rank of X;
(ii) U = (

u1 |u2 |. . .| up

)
with u1, u2, . . . , up ∈ R

p an orthonormal basis of
eigenvectors of XT X

XT Xui = σ 2
i ui i = 1, . . . , p

for eigenvalues σ 2
i ≥ 0 arranged in a decreasing order – σ 2

1 ≥ σ 2
2 ≥ · · · ≥

σ 2
p ;

(iii) V = (v1 |v2 |. . .| vn) with v1, v2, . . . , vn any orthonormal basis of R
n such

that

vi = 1
σi

Xui ∀ i = 1, . . . , r (3.19)
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As a consequence, if k � r – the only interesting case – there holds

k∑
j=1

σjvju
T
j =

k∑
j=1

σj

1
σj

(Xuj )u
T
j =

k∑
j=1

(Xuj )u
T
j (3.20)

and to obtain the k-PC model it is enough to pose hj = uj ∀ j = 1, . . . , k.
Moreover, λj = σ 2

j ∀ j = 1, . . . , k.

4. PCA and multicomponent theories

From a purely computational/statistical point of view, multicomponent
theories are strictly related to PCA. Indeed multicomponents equations can be
interpreted as PC models of adhesion work data, although in an indirect way.
The number of components coincides with the number of PC taken into account.
Any multicomponent theory describes the work of adesion between a solid –
denoted by the index i = 1, . . . , s – and a liquid – specified by j = 1, . . . , l –
by expressions of the form (1.11), which can be collected into the matrix rela-
tionship

W adh = 2
c∑

k=1

σ (k)λ(k)T (4.1)

on having introduced the s × l adhesion work matrix

W adh =
⎛
⎜⎝

W adh
11 . . . W adh

1l
...

...

W adh
s1 . . . W adh

sl

⎞
⎟⎠ , (4.2)

the solid and liquid component column vectors

ξ (k) =
⎛
⎜⎝

ξ
(k)

1
...

ξ
(k)
s

⎞
⎟⎠ λ(k) =

⎛
⎜⎝

λ
(k)

1
...

λ
(k)
l

⎞
⎟⎠ ∀ k = 1, . . . , c (4.3)

and the auxiliary solid component column vectors

σ (k) =
⎛
⎜⎝

σ
(k)

1
...

σ
(k)
s

⎞
⎟⎠ =

c∑
h=1

Shkξ
(h) =

c∑
h=1

Skhξ
(h) =

c∑
h=1

Skh

⎛
⎜⎝

ξ
(h)

1
...

ξ
(h)
s

⎞
⎟⎠ . (4.4)

Throughout the paper, the vectors λ(1), . . . , λ(c) will be assumed linearly inde-
pendent, and so will σ (1), . . . , σ (c) – or ξ (1), . . . , ξ (c) due to invertibility of the
matrix S.
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Principal components of the adhesion work matrix are obtained from the
eigenvectors of the l × l real symmetric and semipositive definite matrix

W adhT
W adh = 4

c∑
h=1

λ(h)σ (h)T
c∑

k=1

σ (k)λ(k)T = 4
c∑

h,k=1

σ (h)T σ (k)λ(h)λ(k)T (4.5)

which maps the vector space R
l into the linear subspace of R

l spanned by
λ(1), . . . , λ(c)

W adhT
W adhx ∈ span

{
λ(1), . . . , λ(c)

}
∀ x ∈ R

l (4.6)

since

W adhT
W adhx = 4

c∑
h,k=1

σ (h)T σ (k)λ(h)λ(k)T x = 4
c∑

h,k=1

[σ (h)T σ (k)] [λ(k)T x] λ(h) .

(4.7)

Obviously the linear space span
{
λ(1), . . . , λ(c)

}
has dimension l

dim span
{
λ(1), . . . , λ(c)

}
= l (4.8)

due to the assumed linear independency of λ(1), . . . , λ(c). As a consequence, the
real non-negative spectrum of W adhT

W adh consists of

(i) c positive eigenvalues σ1, . . . , σc, whose eigenvectors belong to span
{
λ(1), . . . ,

λ(c)
}

and define an orthonormal basis therein;
(ii) a 0 eigenvalue with multiplicity l − c and eigenvectors forming an arbitrary

(orthonormal) basis in the orthogonal complement of span
{
λ(1), . . . , λ(c)

}
.

R
l is thus decomposed into a direct sum of the corresponding subspaces

R
l = span

{
λ(1), . . . , λ(c)

}
⊕ span

{
λ(1), . . . , λ(c)

}⊥
(4.9)

each of which is invariant through W adhT
W adh:

W adhT
W adh

(
span

{
λ(1), . . . , λ(c)

})
⊆ span

{
λ(1), . . . , λ(c)

}

W adhT
W adh

(
span

{
λ(1), . . . , λ(c)

}⊥)
⊆ span

{
λ(1), . . . , λ(c)

}⊥
. (4.10)

The eigenvalues σ1, . . . , σc are also the positive singular values of the matrix
W adh. The loadings p(1), . . . , p(c) of the c first principal components constitute
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an orthonormal basis of the linear subspace span
{
λ(1), . . . , λ(c)

}
, so that appro-

priate constants α
kh

defining a non-singular c × c matrix α allow us to write

λ(k) =
c∑

h=1

α
kh

p(h) ∀ k = 1, . . . , c . (4.11)

The works of adhesion become then

W adh = 2
c∑

k=1

σ (k)λ(k)T = 2
c∑

k,h=1

σ (k)α
kh

p(h)T = 2
c∑

h=1

( c∑
k=1

α
kh

σ (k)

)
p(h)T

(4.12)

and the scores of the first c principal components can be expressed as

t (h) =
c∑

k=1

α
kh

σ (k) ∀ h = 1, . . . , c , (4.13)

whence we deduce the inverse relationships

σ (k) =
c∑

h=1

(α−1)
hk

t(h) ∀ k = 1, . . . , c (4.14)

and coming back to the solid component vectors

ξ (r) =
c∑

k=1

(S−1)
rk

σ (k) =
c∑

h,k=1

(S−1)
rk

(α−1)
hk

t(h). (4.15)

As a conclusion, the vectors λ(k) and ξ (k) of liquid and solid components can
be written as appropriate linear combinations of loadings p(k) and scores t (k) of
the c principal components of W adh. A necessary condition for a multicomponent
model to be adequate to describe the works of adhesion of the materials considered
is that adhesion work matrix W adh admits a good principal component representa-
tion, with the same number of PCs as the number of components per each com-
pound (the residual, unexplained deviance of adhesion work data must be small).
Noticeably, this statement is independent on the estimate of components, i.e., it
provides an a priori criterion.
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5. The nonlinear best-fit estimate of components revisited

The PC loadings and scores entering formulas (4.11) and 4.15) are easily
calculated through SVD of the data matrix W adh, for which standard and effi-
cient algorithms are available. For any choice of the nonsingular c × c matrix α,
the liquid component vectors λ(k) and the solid component vectors ξ (k) given by
(4.11) and (4.15), respectively, provide formally equivalent models of the adhe-
sion work matrix, with the same residual sum of squares. The matrix α has a
fixed number c2 of entries, independent on the number of solids and liquids
involved in the calculations. Such entries can be used as free variables to match,
at least approximately, the surface tension equations of all the liquids (1.12), for
instance by minimizing the sum of squares

l∑
j=1

[ c∑
h,k=1

λ
(h)
j S

hk
λ

(k)
j − γj

]2

(5.1)

thus leading to an optimization problem with a number of free variables inde-
pendent on l. This means that as a first approximation a tentative solution of
equation (1.12) is searched in the known linear space span{p(1), . . . , p(c)}. The
result will provide a reasonable initial guess to reckon a nonlinear best-fit solu-
tion for the set of both adhesion work and liquid surface tension equations,
(1.11) and (1.12).

6. Scale multiplicity

By definition, equations (4.11) and (4.15) leave invariant the adhesion work
matrix W adh for any choice of the nonsingular matrix α. For a nonsingular α̃ in
place of α the liquid and solid component vectors become

λ̃(k) =
c∑

h=1

α̃
kh

p(h) ξ̃ (r) =
c∑

k=1

(S−1)
rk

σ (k) =
c∑

h,k=1

(S−1)
rk

(α̃−1)
hk

t(h) (6.1)

and define a new set of components as accurate as the original one in what
concerns the only adhesion works. If we consider the arbitrary nonsingular c×c

matrix β defined by α̃ = βα, the new components are related to the old ones by
the linear transformations

λ̃(k) =
c∑

h=1

α̃
kh

p(h) =
c∑

h,a=1

β
ka

α
ah

p(h) =
c∑

a=1

β
ka

λ(a) k = 1, . . . , c (6.2a)
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and

ξ̃ (r) =
c∑

h,k=1

(S−1)
rk

(α̃−1)
hk

t(h) =
c∑

h,k=1

(S−1)
rk

[(α̃T )−1]
kh

t(h)

=
c∑

h=1

[S−1(α̃T )−1]
rh

t (h) =
c∑

h=1

[S−1(αT βT )−1]
rh

t (h)

=
c∑

h=1

[S−1(βT )−1(αT )−1]
rh

t (h) =
c∑

h=1

[S−1(βT )−1S S−1(αT )−1]
rh

t (h)

=
c∑

h,k=1

[S−1(βT )−1S]
rk

[S−1(αT )−1]
kh

t(h) =
c∑

k=1

[S−1(βT )−1S]
rk

ξ (k) (6.2b)

∀ r = 1, . . . , c. The further requirement that the transformation (6.2) does not
affect equation (1.12) of the liquid surface tensions implies that the matrix β is
no more arbitrary but obeys βT Sβ = S, since ∀ j = 1, . . . , l

γj =
∑

h,k=1

λ̃
(h)
j S

hk
λ̃

(k)
j =

c∑
h,k=1

c∑
a,b=1

β
ha

λ
(a)
j S

hk
β

kb
λ

(b)
j

=
c∑

a,b=1

c∑
h,k=1

(βT )
ah

S
hk

β
kb

λ
(a)
j λ

(b)
j =

c∑
a,b=1

(βT Sβ)
ab

λ
(a)
j λ

(b)
j

=
c∑

a,b=1

S
ab

λ
(a)
j λ

(b)
j , (6.3)

so that liquid and solid components undergo the same transformation

λ̃(k) =
c∑

h=1

βkhλ
(h) ξ̃ (k) =

c∑
h=1

βkhξ
(h) ∀ k = 1, . . . , c. (6.4)

We conclude that surface tensions and works of adhesion do not specify
components in a unique way, but only up to a transformation (6.4), thus allo-
wing a multiplicity of scales for the multicomponent model. In order to remove
multiplicity and specify a unique well-defined scale, a conventional assignment
of component values to some reference compounds is needed. The most gene-
ral matrix β is completely determined by c(c − 1)/2 parameters, thus the refe-
rence components must be chosen accordingly. It is easily verified that the set of
matrices β

G = {β real c × c non-singular matrix : βT Sβ = S} (6.5)
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constitutes a non-Abelian group with respect to the usual matrix product,
because I

T SI = S, while βT Sβ = S implies (β−1)T Sβ−1 = S and finally

βT Sβ = S, γ T Sγ = S =⇒ (βγ )T Sβγ = γ T βT Sβγ = γ T Sγ = S. (6.6)

Up to isomorphisms, G can also be identified with the generalized orthogo-
nal group O(d+, d−; R), on having denoted with d+ and d− respectively the num-
ber of positive and negative eigenvalues of the symmetric matrix S [30]; as an
analytical manifold, the group O(d+, d−; R) has dimension c(c − 1)/2. Matrices
β ∈ G show very peculiar spectral properties, because equality βT S = Sβ−1

implies for any µ ∈ C

(βT − µI)S = S(β−1 − µI) (6.7)

and therefore

det(βT − µI) detS = detS det(β−1 − µI) (6.8)

or, equivalently,

det(β − µI) = det(β−1 − µI) (6.9)

so that if µ ∈ C is an eigenvalue of β, so is µ−1. Moreover, any matrix of G

infinitesimally close to the identity can be written into the form

I + ε Γ + o(ε) (ε → 0) (6.10)

in terms of the scalar ε ∈ R and of any c × c real matrix Γ which satisfies the
relationship

[I + ε Γ
T + o(ε)]S[I + ε Γ + o(ε)] = S (ε → 0) (6.11)

i.e.,

S Γ + Γ
T S = 0 . (6.12)

By using the symmetry of the structure matrix S, equation (6.12) reduces to

S Γ + (S Γ)T = 0 (6.13)

and therefore the most general form of Γ must be

Γ = S−1
Ω (6.14)

on having denoted with Ω any real skewsymmetric c × c matrix, which depends
on c(c − 1)/2 parameters. Vice versa, a simple calculation shows that whenever
(6.12) is satisfied the exponential of Γ

exp(Γ) =
∞∑

n=0

1
n!Γ

n = lim
n→+∞

(
I + Γ

n

)n

(6.15)
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belongs to G. Consistently, the spectrum of matrices Γ obeying (6.14) is symme-
trical with respect to zero, owing to the chain of equalities

det(Γ − µI) = det(S−1Ω − µI) = det(S−1)det(Ω − µS)

= det(S−1)det(ΩT − µST ) = det(S−1)det(−Ω − µS)

= (−1)cdet(S−1)det(Ω + µS) = (−1)cdet(S−1Ω + µI)

= (−1)cdet(Γ + µI) (6.16)

so that if µ is an eigenvalue of Γ, so is −µ. Finally, it is easily checked that the
whole set of matrices of type (6.14) forms a Lie algebra with respect to matrix
product. The general theory of Lie groups and algebras [30] ensures that ele-
ments of G can be conveniently expressed by exponentiation of matrices (6.14).

Scale multiplicity due to the invariance transformation group (6.5) leads to
the important consequence that the material parameters (components) of a mul-
ticomponent theory do not necessarily admit a direct interpretation, as they are
obtained by surface tension and contact angle data only, unless it is possible to
establish a correlation with other scales of surface energetics admitting a direct
measurement of the model parameters [25].

7. Scale multiplicity in some special multicomponent models

In the very special case of vOCG theory, the c = 3 components can be
more satisfactorily identified with the square roots of the dispersive, acidic and
basic parameters √

γ LW ,
√

γ + ,
√

γ − . (7.1)

The structure matrix is given by

S =
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ (7.2)

and has signature {1, 1, −1}, which is also its spectrum. For matrices of the inva-
riance group G close to unity according to (6.10), condition (6.14) provides

Γ = S

⎛
⎝ 0 ω1 ω2

−ω1 0 ω3
−ω2 −ω3 0

⎞
⎠ =

⎛
⎝ 0 ω1 ω2

−ω2 −ω3 0
−ω1 0 ω3

⎞
⎠ (7.3)

since S is clearly idempotent. Arbitrary choices of the real scalars ω1, ω2, ω3
allow us to write the elements of group G in the exponential form

β = exp

⎛
⎝ 0 ω1 ω2

−ω2 −ω3 0
−ω1 0 ω3

⎞
⎠ . (7.4)
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As already outlined, the c = 3 components of the QC model coincide with the
Qin and Chang parameters up to a constant scale factor

1√
2
P d,

1√
2
P a,

1√
2
P b (7.5)

with a structure matrix of the form⎛
⎝1 0 0

0 0 −1
0 −1 0

⎞
⎠ (7.6)

and signature {1, 1, −1} as in vOCG theory. Owing to idempotency of S, the
group generators Γ take then the general form

Γ = S

⎛
⎝ 0 ω1 ω2

−ω1 0 ω3
−ω2 −ω3 0

⎞
⎠ =

⎛
⎝ 0 ω1 ω2

ω2 ω3 0
ω1 0 −ω3

⎞
⎠ (7.7)

and the matrices of the connected component of G containing the identity are
expressed as

β = exp

⎛
⎝ 0 ω1 ω2

ω2 ω3 0
ω1 0 −ω3

⎞
⎠ ∀ ω1, ω2, ω3 ∈ R . (7.8)

Extended Drago model describes surface energetics in terms of c = 4 para-
meters per compound

CA, CB, EA, EB , (7.9)

the idempotent structure matrix being given by

S =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ (7.10)

with signature – and spectrum – {1, 1, −1, −1}. Invariance group transformations
are generated by the matrices

Γ = S

⎛
⎜⎜⎝

0 ω1 ω2 ω3
−ω1 0 ω4 ω5
−ω2 −ω1 0 ω6
−ω4 −ω5 −ω6 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−ω1 0 ω4 ω5
0 ω1 ω2 ω3

−ω4 −ω5 −ω6 0
−ω2 −ω1 0 ω6

⎞
⎟⎟⎠ (7.11)



1050 C. Della Volpe and S. Siboni / PCA and multicomponent theories

and can then be put into the exponential form

β = exp

⎛
⎜⎜⎝

−ω1 0 ω4 ω5
0 ω1 ω2 ω3

−ω4 −ω5 −ω6 0
−ω2 −ω1 0 ω6

⎞
⎟⎟⎠ ∀ ωi ∈ R , i = 1, 2, . . . , 6 . (7.12)

It is worthy of note that in the original Drago model it is not mandatory to
apply the same linear transformation to both acids and bases, since the inclusion
of a compound in the class of acids or in that of bases must be a priori deci-
ded and the two classes appear predefined and disjoint. Therefore, no constraint
of the form βT Sβ = S applies and the matrix β is simply requested to be non-
singular – G ∈ GL(c, R), the general linear group of real c × c matrices.

8. Conclusions

It has been proved that PCA techniques may be helpful, firstly, in
determining whether a multicomponent model is actually adequate to account
for adhesion work data of a certain set of liquids and solids and, secondly, in the
calculation of material parameters. The approach can be applied to multicom-
ponent theories reducible to a bilinear/quadratic structure, which are those most
commonly used in adhesion science and technology. The necessary precondition
to do that is the availability of a full and reliable set of adhesion works between
given test liquids and solids, to which the nonlinear best-fit approach may be
applied. An interesting by-product is the general occurrence of scale multiplicity,
due to the possibility of changing the whole set of components by an appropriate
group of linear transformations which leave all the multicomponent model equa-
tions invariant. Selection of a specific scale requires the arbitrary definition of a
suitable number of components for appropriately chosen reference compounds.
This circumstance prevents the direct chemico-physical interpretation of material
components as they are estimated from surface tension and adhesion work equa-
tions, that is from surface tension and equilibrium contact angle data only. Such
an interpretation could come only from an eventual theoretical or empirical cor-
relation between a particular scale of a multicomponent theory and other models
of surface energetics where the material parameters are susceptible of a direct
measurement.
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